top of page

UCS654: Predictive Analytics using Statistics (Jan to June 25 - Even 2425)

Table of Content
Join WhatsApp Group | Click Here
Marking Scheme
  1. MST = 35 Marks
  2. EST = 35 Marks
  3. Sessionals = 30 marks
    • Quiz = 10 marks
    • Guided Projects = 10 marks
    • Kaggle Hack = 10 marks
01 - Lecture Resources
01 - Lecture Resources
  • Topic01 - Topsis - Multiple Criteria Decision Making  |  Link
  • Topic02 - Sampaling | Link
  • Topic03 - Distribution | Link
  • Topic04 - Machine Learning using Pycaret | Link
  • Topic05 - Data Generation using Modelling and Simulation for Machine Learning | Link
  • Topic06 - Association Mining - Apriori | Link
  • Topic07 - Association Mining - ECLAT | Link
  • Topic08 - Multi-Threading using Python | Link
  • Topic09 - Hypothesis Testing and Parameter Estimation | Link
  • Topic10 - Parameter Optimization | Link
  • Topic11 - Nonliner Modelling | Link
  • Topic12 - Measuring Data Similarity and Dissimilarity | Link
  • Topic13 - Ensemble Technique | Link
02 - Labs Experiments
02 - Labs Experiments - Guided Project & Kaggle
General Instructions
1. Guided Project (GP)
  • Step 1: Create a login with Thapar email id on Coursera (coursera.org).
  • Step 2: Complete the given below "Guided Project" and submit the "Compeletion Certificate" link.
  • Step 3: Explore Sample Certificate | Click Here
  • Step 4: Explore all "Guided Projects" on Coursera | Click Here
  • Maximum marks for maximum submissions
2. Kaggle Resources
  • Five days short and intensive course on Kaggle (1hr each; total = 5hr) | Click Here
  • Kaggle Grand Master Talks
T-1  T-2  T-3  T-4  T-5  T-6  T-7  T-8  T-9  T-10
  • Getting started with Kaggle by Mr. Raghav Garg, Mr. Aadil Garg, Mr. Pratham Garg | Click Here
  • Kaggle Resources by Mr. Eishkaran Singh | Click Here
  • Kaggle notebooks
    • Latest Playground Series Basic's Notebook for Beginners | Click Here
    • Latest Playground Series Advanced Approach | Click Here
    • XGB HyperParameter Tuning Notebook | Click Here

 

3. Students Achievement @ Kaggle | Click Here
03 - Assignments
03 - Assignments
  • Assignment01 - Topsis
  • Assignment02 - Sampling
  • Assignment03 - Topsis for Pretrained Models
  • Assignment04 - Clustering
  • Assignment05 - Mashup
  • Assignment06 - Parameter Estimation
  • Assignment07 - Multi Threading
  • Assignment08 - Parameter Optimization of SVM
Assignment01 - Marks Analysis | 05 Marks | Due Date: 30 Jan 2022 | 23:59:59 | Assignment Link | Submission Link
Assignent02 - Feature Extraction | 05 Marks | Due Date: 06 Feb 2022 | 23:59:59 | Assignment Link | Submission Link
Assignment03 - Classification | 05 Marks | Due Date: 20 Feb 2022 | 23:59:59 | Assignment Link | Submission Link
​​Assignment05 - Google Data Studio | 05 Marks | Due Date: 10 March 2022 | 23:59:59 | Assignment Link | Submission Link
04-KaggleHack
04 - Kaggle Hack
  1. Kaggle-Hack-Lab-Exam-1 | Due Date: 20 Jan 2025 07:59:59 | Click Here to participate
  2. Kaggle-Hack-Lab-Exam-2 | Due Date: 27 Jan 2025 07:59:59 | Click Here to participate
  3. Kaggle-Hack-Lab-Exam-3 | Due Date: 03 Feb 2025 07:59:59 | Click Here to participate
  4. Kaggle-Hack-Lab-Exam-4 | Due Date: 10 Jan 2025 07:59:59 | Click Here to participate
  5. Kaggle-Hack-Lab-Exam-5 | Due Date: 17 Jan 2025 07:59:59 | Click Here to participate

bottom of page